3D printing, also known as additive manufacturing, is more versatile and efficient than casting. It adds a material with precision, often in complex geometries, with considerably less excess to cut away. Adding low-dimensional nanomaterials such as CNTs, graphene, metal nanoparticles and quantum dots allows 3D-printed materials to adapt to external stimuli, giving them features such as electrical and thermal conductance, magnetism and electrochemical storage.
But 3D printing using plastic, metal or something else entirely isn’t new. What Tech researchers have done differently is use polymer nanocomposites (made of epoxy, carbon nanotubes and nano-clay) and a printing process that doesn’t sacrifice functionality. The junction of material type and morphology — size, shape, structure — in polymer nanocomposite inks is the ultimate in form meeting function.
The exploration of process, morphology and properties of polymeric inks is the subject of an article recently published in the journal Additive Manufacturing by Parisa Pour Shahid Saeed Abadi, an engineer who explores the interface of materials, mechanics and medicine, and graduate student Masoud Kasraie.
Abadi and Kasraie point out that before researchers can sprint off to the races using polymeric inks, they must first learn to walk. The first step is digging into the intersection of the macro scale (how our eyes see a material performing) and the nano scale (what we can’t see, but know is occurring).