This finding is particularly promising because it addresses two current problems for the sustainability of plastics: degrading the most persistent form of petroleum-based plastic while sustainably producing biodegradable plastics.
"We believe that this discovery could be significant in tackling plastic pollution," Yoshida states, "as we show that the PET-degradation and PHB-synthesis pathways are functionally linked in I. sakaiensis. This might provide a novel pathway where a single bacterial species breaks down difficult-to-recycle PET plastics and uses the products to make biodegradable PHA plastics."
Given the overwhelming challenge of dealing with worldwide plastic pollution, this novel bacterial approach may be a significant part of the solution.