Silica sand is a cheap, readily available material that has been gaining interest in automotive and aerospace sectors for creating composite parts. Lightweight materials, such as carbon fiber or fiberglass, are wrapped around 3D-printed sand cores, or "tools," and cured with heat. Silica sand is attractive for tooling because it does not change dimensions when heated and because it offers a unique advantage in washable tooling. In composite applications, using a water-soluble binder to form sand tools is significant because it enables a simple washout step with tap water to remove the sand, leaving a hollow composite form.
"To ensure accuracy in tooling parts, you need a material that does not change shape during the process, which is why silica sand has been promising. The challenge has been to overcome structural weakness in sand parts," said Dustin Gilmer, a University of Tennessee Bredesen Center student and the study's lead author.
Current sand casting molds and cores have limited industrial use because commercial methods, such as washout tooling, apply heat and pressure that can cause sand parts to break or fail on the first try. Stronger sand parts are needed to support manufacturing at a large scale and enable rapid part production.
"Our high-strength polymer sand composite elevates the complexity of parts that can be made with binder jetting methods, enabling more intricate geometries, and widens applications for manufacturing, tooling, and construction," said Gilmer.
The novel binder won a 2019 R&D 100 Award and has been licensed by industry partner ExOne for research.