Inspired by this detoxification reaction, the team modified the structure of epoxy resin by incorporating disulfide groups (-S-S-) into it, making the resin molecules cleavable by the thiol group (-SH) of glutathione. In this system, epoxy resins immersed in an aqueous solution of glutathione were confirmed to dissolve completely without leaving any solid remains. Decomposed epoxy residue is then recovered and transformed into epoxy resins again. The storage modulus (a stiffness indicator) of the recycled resins was virtually the same as that of the original resins and their performance was only slightly affected by repeated recycling. Because glutathione rarely occurs outside living organisms, there is no risk of it accidentally decomposing epoxy resins still in use under normal conditions.
There are no other established recycling techniques capable of separating largely incombustible CFRP into carbon fibers and resins and retrieving these materials. The use of this recycling system may promote CFRP recycling. Moreover, this system is applicable to the recycling of other types of resins and composites in addition to epoxy resins. In future studies, the team plans to apply this system to the recycling of a wide range of commonly used plastic materials, thereby fostering the development of a circular plastic economy.